## <u>UNIT- I – OVERVIEW OF POWER ELECTRONICS</u>

#### **PART-A & PART-B QUESTIONS**

- 1. Specify the various parts for designing power electronics equipments. (APR-18)
- 2. Define firing angle and extinction angle? (APR-18)
- 3. Write short notes on various types of power electronics. (APR-18)
- 4. Write the diagram explain snubber circuit (APR-18)
- 5. Define dv/dt and di/dt.
- 6. Explain forward conduction region of SCR.
- 7. Explain forward blocking region of SCR.
- 8. Explain reverse blocking region.
- 9. State thyristor gate requirement
- 10. Explain power module and advantages of power module.
- 11. Define holding current and latching current.
- 12. Define commutation and its types.
- 13. Specify the various types of forced commutation.
- 14. State the advantages and disadvantages of GTO and thyristor.
- 15. Explain class B commutation with circuit diagram.
- 16. State thyristor gate requirement.
- 17. Draw the block diagram of power electronics and explain its each block.
- 18. Specify the various methods for triggering the SCR.
- 19. Draw the basic structure and symbol of SCR.

#### PART-C QUESTIONS

- 1. With the diagram explain the principle of operation of SCR.(APR-18)
- 2. A) With the circuit diagram explain the operation of UJT based triggering circuit.
- 3. B) with the circuit diagram explain the operation of class B commutation (APR-18)
- 4. Explain IGBT with diagram.
- 5. With diagram explain the effect of dv/dt and snubber circuit.
- 6. Explain the VI characteristics of SCR.
- 7. With the diagram explain the principle of operation of MODFET.
- 8. Explain any two types of commutation circuits.
- 9. Explain GTO with diagram
- 10. Explain intelligent module.
- 11. Write note on power electronic switch specification.
- 12. With the diagram explain the effect of dv/dt and snubber circuit.
- 13. Briefly explain driver and buffer circuit for thyristor.

# <u>UNIT- II – LINE COMMUTATED POWER CONTROL CIRCUITS</u>

#### **PART-A & PART-B QUESTIONS:**

- 1. Define cyclo converter (APR-18)
- 2. Explain the principle of phase control in AC voltage controller (APR-18)
- 3. Define line commutated converters and mention its types.
- 4. Draw the circuit diagram of single phase full converter.
- 5. Draw the circuit diagram of three phase fully controlled bride with RL load.
- 6. Define three phase dual converter.
- 7. Define twelve pulse converter.
- 8. Define AC voltage controlled and mention its two types of control.
- 9. Define cyclo converter?
- 10. Define firing angle and extinction angle.
- 11. Write short notes o rectifying mode and inverting mode of full converter
- 12. State the advantaged of circulating current in single phase dual converters.
- 13. Derive the average DC output voltage of three phase full converter
- 14. Explain the principle of ON-OFF control in AC voltage controller.
- 15. Explain the principle of phase control in AC voltage controller.

#### **PART-C QUESTIONS**

- 1. Draw the circuit diagram of single phase full converter and explain its operation. (APR-18)
- 2. With diagram explain the three phase cyclo converter.(APR-18)
- 3. Explain the operation of twelve pulse converter with circuit diagram.
- 4. With the diagram explain the operation of three phase full wave controller.
- 5. Explain the operation of single phase controller with inductive load.
- 6. Explain the operation of twelve pulse converter with circuit diagram.
- 7. With diagram explain single phase cycloconverter.
- 8. With diagram explain the operation of three phase dual converter.

## <u>UNIT- III – FORCED COMMUTATED OWER CONTROL CIRCUITS.</u>

#### **PART-A & PART-B QUESTIONS:**

- 1. Specify the various types of DC-DC converters. (APR-18)
- 2. Name the various types of PWM technique commonly used inverter. (APR-18)
- 3. With the diagram explain step-up converter. (APR-18)
- 4. Explain sinusoidal pulse width modulation. (APR-18)
- 5. State the application of inverter.
- 6. Define step down converter and step up converter.
- 7. Write short notes on rectifying mode and inverting mode of full controller.
- 8. Explain multiple pulse width modulation.
- 9. Explain simple DC-DC converter.
- 10. Specify the applications of switch mode DC-DC conversion.
- 11. State the applications of inverters.
- 12. Specify the two modes of operation of three phase inverter.
- 13. Define modulation ratio.
- 14. Define the various types of PWM techniques commonly used in inverters.
- 15. Draw and explain the block diagram of simple DC-DC converter.
- 16. Write short notes on inverters.
- 17. Draw the circuit diagram and waveform of single phase bridge inverter.
- 18. Explain single pulse width modulation.
- 19. Explain multiple pulse width modulation.

#### **PART-C QUESTIONS:**

- With the diagram explain the continuous conduction mode of BUCK-BOOST converter. (APR-18)
- 2. Explain the operation of CUK DC-DC converter with diagram. (APR-18)
- 3. With the diagram and waveform explain the operation of 120 conduction mode of three phase inverter. (APR-18)
- 4. With the diagram explain sinusoidal PWM of three phase inverter.
- 5. With the diagram explain the operation of single phase bridge inverter.
- 6. With the diagram explain step down converter.
- 7. With diagram explain the continuous conduction mode of step up converter.
- 8. Explain the principle of operation of single phase half bridge inverter.
- 9. With diagram explain sinusoidal pulse width modulation.
- 10. With the proper diagram explain the control of DC-DC converters.

## <u>UNIT- IV – APPLICATIONS OF POWER ELECTRONICS</u>

#### **PART-A & PART-B QUESTIONS**

- 1. What are static VAR compensators? (APR-18)
- 2. State the difference between ON-LINE ups OFF-LINE ups.
- 3. Define uninterrupted power supply and mention its types.
- 4. Draw the block diagrams of various types of welders.
- 5. Explain AC solid state relay using opto coupler.
- 6. Explain switch mode power supplies.
- 7. Write short note on solid state relays.
- 8. Explain AC solid state relay using pulse transformer.
- 9. State the uses of power electronics.
- 10. Define ON line UPS.
- 11. Define OFF line UPS.
- 12. State the power available from wind mill and small hydro system.

# **PART-C QUESTIONS**

- 1. With the diagram explain the high frequency fluorescent system. (APR-18)
- 2. With the diagram explain high voltage DC transmission system. (APR-18)
- 3. With a diagram explain static AC solid state relay.
- 4. With a diagram explain static AC circuit breakers.
- 5. With the diagram explain induction heating.
- 6. With the block diagram explain a switch mode welder.
- 7. With the block diagram explain wind/hydro generator.
- 8. With a diagram explain thyristor switched capacitor.
- 9. Explain static VAR compensators.
- 10. With the block diagram explain ON line UPS.

# **UNIT- V MOTOR DRIVE APPLICATION.**

#### **PART-A & PART-B QUESTIONS**

- 1. What is soft start of induction motor? (APR-18)
- 2. Write notes on speed control by varying stator frequency and voltage. (APR-18)
- 3. Define slip and slip speed.
- 4. Write notes on induction motor drives.
- 5. Define constant torque region.
- 6. State the observations of induction motor.
- 7. Why the DC is drives used in many more applications.
- 8. Define pull out torque.
- 9. Define field weakening region
- 10. Define constant power system.
- 11. Explain constant power region.
- 12. Write note on classifications of variable frequency converter.

### **PART-C QUESTIONS**

- 1. With diagram explain the operation of variable frequency PWM-VSI drives. (APR-18)
- 2. Explain the speed control of slip ring induction motor by using static slip power recovery. (APR-18)
- 3. Explain the basic principle of induction motor operation.
- 4. Briefly explain induction motor capability below and above the rated speed.
- 5. With the diagram explain line frequency converters.
- 6. With the proper diagrams explain switch mode DC-DC converters.
- 7. With diagram, explain DC motor with separately excited field winding.